Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Med Sci Sports Exerc ; 55(11): 2083-2095, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436929

RESUMO

PURPOSE: Collagen peptide supplementation has been reported to enhance synthesis rates or growth in a range of musculoskeletal tissues and could enhance tendinous tissue adaptations to resistance training (RT). This double-blind placebo-controlled study aimed to determine if tendinous tissue adaptations, size (patellar tendon cross-sectional area (CSA) and vastus lateralis (VL) aponeurosis area), and mechanical properties (patellar tendon), after 15 wk of RT, could be augmented with collagen peptide (CP) versus placebo (PLA) supplementation. METHODS: Young healthy recreationally active men were randomized to consume either 15 g of CP ( n = 19) or PLA ( n = 20) once every day during a standardized program of lower-body RT (3 times a week). Measurements pre- and post-RT included patellar tendon CSA and VL aponeurosis area (via magnetic resonance imaging), and patellar tendon mechanical properties during isometric knee extension ramp contractions. RESULTS: No between-group differences were detected for any of the tendinous tissue adaptations to RT (ANOVA group-time, 0.365 ≤ P ≤ 0.877). There were within-group increases in VL aponeurosis area (CP, +10.0%; PLA, +9.4%), patellar tendon stiffness (CP, +17.3%; PLA, +20.9%) and Young's modulus (CP, +17.8%; PLA, +20.6%) in both groups (paired t -tests (all), P ≤ 0.007). There were also within-group decreases in patellar tendon elongation (CP, -10.8%; PLA, -9.6%) and strain (CP, -10.6%; PLA, -8.9%) in both groups (paired t -tests (all), P ≤ 0.006). Although no within-group changes in patellar tendon CSA (mean or regional) occurred for CP or PLA, a modest overall time effect ( n = 39) was observed for mean (+1.4%) and proximal region (+2.4%) patellar tendon CSA (ANOVA, 0.017 ≤ P ≤ 0.048). CONCLUSIONS: In conclusion, CP supplementation did not enhance RT-induced tendinous tissue remodeling (either size or mechanical properties) compared with PLA within a population of healthy young men.


Assuntos
Ligamento Patelar , Treinamento Resistido , Masculino , Humanos , Treinamento Resistido/métodos , Tendões , Ligamento Patelar/diagnóstico por imagem , Colágeno , Peptídeos , Poliésteres/farmacologia , Músculo Esquelético
2.
Scand J Med Sci Sports ; 33(10): 2009-2024, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37350104

RESUMO

Aging involves a marked decline in physical function and especially muscle power. Thus, optimal resistance exercise (RE) to improve muscle power is required for exercise prescription. An eccentric lowering phase immediately before a concentric lift (ECC-CON) may augment concentric power production, due to various proposed mechanisms (e.g., elastic recoil, pre-activation, stretch reflex, contractile history), when compared with a concentric contraction alone (CON-Only). This study compared the effect of a prior eccentric lowering phase on older adult concentric power performance (ECC-CON vs. CON-Only) during a common multiple joint isoinertial RE (i.e., leg press) with a range of loads. Twelve healthy older adult males completed two measurement sessions, consisting of ECC-CON and CON-Only contractions, performed in a counterbalanced order using 20-80% of one repetition maximum [% 1RM] loads on an instrumented isoinertial leg press dynamometer that measured power, force, and velocity. Muscle activation was assessed with surface electromyography (sEMG). For mean power ECC-CON>CON-Only, with a pronounced effect of load on the augmentation of power by ECC-CON (+19 to +55%, 35-80% 1RM, all p < 0.032). Similarly, for mean velocity ECC-CON>CON-Only, especially as load increased (+15 to 54%, 20-80% 1RM, all p < 0.005), but mean force showed more modest benefits of ECC-CON (+9 to 14%, 50-80% 1RM, all p < 0.05). In contrast, peak power and velocity were similar for ECC-CON and CON-Only with all loads. Knee and hip extensor sEMG were similar for both types of contractions. In conclusion, ECC-CON contractions produced greater power, and velocity performance in older adults than CON-Only and may provide a superior stimulus for chronic power development.


Assuntos
Músculo Esquelético , Treinamento Resistido , Masculino , Humanos , Idoso , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Eletromiografia , Exercício Físico
3.
Acta Physiol (Oxf) ; 237(2): e13903, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36433662

RESUMO

AIM: Bioactive collagen peptides (CP) have been suggested to augment the functional, structural (size and architecture), and contractile adaptations of skeletal muscle to resistance training (RT), but with limited evidence. This study aimed to determine if CP vs. placebo (PLA) supplementation enhanced the functional and underpinning structural, and contractile adaptations after 15 weeks of lower body RT. METHODS: Young healthy males were randomized to consume either 15 g of CP (n = 19) or PLA (n = 20) once every day during a standardized program of progressive knee extensor, knee flexor, and hip extensor RT 3 times/wk. Measurements pre- and post-RT included: knee extensor and flexor isometric strength; quadriceps, hamstrings, and gluteus maximus volume with MRI; evoked twitch contractions, 1RM lifting strength, and architecture (with ultrasound) of the quadriceps. RESULTS: Percentage changes in maximum strength (isometric or 1RM) did not differ between-groups (0.684 ≤ p ≤ 0.929). Increases in muscle volume were greater (quadriceps 15.2% vs. 10.3%; vastus medialis (VM) 15.6% vs. 9.7%; total muscle volume 15.7% vs. 11.4%; [all] p ≤ 0.032) or tended to be greater (hamstring 16.5% vs. 12.8%; gluteus maximus 16.6% vs. 12.9%; 0.089 ≤ p ≤ 0.091) for CP vs. PLA. There were also greater increases in twitch peak torque (22.3% vs. 12.3%; p = 0.038) and angle of pennation of the VM (16.8% vs. 5.8%, p = 0.046), but not other muscles, for CP vs. PLA. CONCLUSIONS: CP supplementation produced a cluster of consistent effects indicating greater skeletal muscle remodeling with RT compared to PLA. Notably, CP supplementation amplified the quadriceps and total muscle volume increases induced by RT.


Assuntos
Treinamento Resistido , Masculino , Humanos , Força Muscular , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Torque , Poliésteres/farmacologia , Contração Isométrica
4.
Eur J Appl Physiol ; 122(7): 1639-1655, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35429294

RESUMO

PURPOSE: Neuromuscular power is critical for healthy ageing. Conventional older adult resistance training (RT) guidelines typically recommend lifting slowly (2-s; CONV), whereas fast/explosive contractions performed either non-ballistically (FAST-NB) or ballistically (FAST-B, attempting to throw the load) may involve greater acute power production, and could ultimately provide a greater chronic power adaptation stimulus. To compare the neuromechanics (power, force, velocity, and muscle activation) of different types of concentric isoinertial RT contractions in older adults. METHODS: Twelve active older adult males completed three sessions, each randomly assigned to one type of concentric contraction (CONV or FAST-NB or FAST-B). Each session involved lifting a range of loads (20-80%1RM) using an instrumented isoinertial leg press dynamometer that measured power, force, and velocity. Muscle activation was assessed with surface electromyography (sEMG). RESULTS: Peak and mean power were markedly different, according to the concentric contraction explosive intent FAST-B > FAST-NB > CONV, with FAST-B producing substantially more power (+ 49 to 1172%, P ≤ 0.023), force (+ 10 to 136%, P < 0.05) and velocity (+ 55 to 483%, P ≤ 0.025) than CONV and FAST-NB contractions. Knee and hip extensor sEMG were typically higher during FAST-B than CON (all P < 0.02) and FAST-NB (≤ 50%1RM, P ≤ 0.001). CONCLUSIONS: FAST-B contractions produced markedly greater power, force, velocity and muscle activation across a range of loads than both CONV or FAST-NB and could provide a more potent RT stimulus for the chronic development of older adult power.


Assuntos
Treinamento Resistido , Idoso , Eletromiografia , Exercício Físico/fisiologia , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Levantamento de Peso/fisiologia
5.
Scand J Med Sci Sports ; 32(4): 685-697, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34978747

RESUMO

The purpose of this cross-sectional study was to compare explosive strength and underpinning contractile, hypertrophic, and neuromuscular activation characteristics of long-term maximum strength-trained (LT-MST; ie, ≥3 years of consistent, regular knee extensor training) and untrained individuals. Sixty-three healthy young men (untrained [UNT] n = 49, and LT-MST n = 14) performed isometric maximum and explosive voluntary, as well as evoked octet knee extension contractions. Torque, quadriceps, and hamstring surface EMG were recorded during all tasks. Quadriceps anatomical cross-sectional area (QACSAMAX ; via MRI) was also assessed. Maximum voluntary torque (MVT; +66%) and QACSAMAX (+54%) were greater for LT-MST than UNT ([both] p < 0.001). Absolute explosive voluntary torque (25-150 ms after torque onset; +41 to +64%; [all] p < 0.001; 1.15≤ effect size [ES]≤2.36) and absolute evoked octet torque (50 ms after torque onset; +43, p < 0.001; ES = 3.07) were greater for LT-MST than UNT. However, relative (to MVT) explosive voluntary torque was lower for LT-MST than UNT from 100 to 150 ms after contraction onset (-11% to -16%; 0.001 ≤ p ≤ 0.002; 0.98 ≤ ES ≤ 1.11). Relative evoked octet torque 50 ms after onset was lower (-10%; p < 0.001; ES = 1.14) and octet time to peak torque longer (+8%; p = 0.001; ES = 1.18) for LT-MST than UNT indicating slower contractile properties, independent from any differences in torque amplitude. The greater absolute explosive strength of the LT-MST group was attributable to higher evoked explosive strength, that in turn appeared to be due to larger quadriceps muscle size, rather than any differences in neuromuscular activation. In contrast, the inferior relative explosive strength of LT-MST appeared to be underpinned by slower intrinsic/evoked contractile properties.


Assuntos
Substâncias Explosivas , Treinamento Resistido , Estudos Transversais , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Torque
6.
Sci Rep ; 11(1): 12286, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112815

RESUMO

Cigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p < 0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p < 0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p < 0.05) in smokers. IL-4, IL-6, IL-10 and IL-12p70 had returned towards levels seen in non-smokers after 14 days smoking cessation (p < 0.05), and IL-2 and TNF-α showed a similar pattern but had not yet fully returned to levels seen in non-smokers. Haemoglobin, haematocrit, eosinophil count, AGEs, MDA and TAS did not significantly change with smoking cessation. Two weeks of smoking cessation was accompanied with an improved muscle fatigue resistance and a reduction in low-grade systemic inflammation in smokers.


Assuntos
Biomarcadores , Inflamação/metabolismo , Fadiga Muscular , Abandono do Hábito de Fumar , Adolescente , Adulto , Citocinas/sangue , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Inflamação/diagnóstico , Inflamação/etiologia , Mediadores da Inflamação , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Estresse Oxidativo , Testes de Função Respiratória , Fatores de Risco , Fumar/efeitos adversos , Fatores de Tempo , Adulto Jovem
7.
J Appl Physiol (1985) ; 131(2): 702-715, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166110

RESUMO

This study compared elbow flexor (EF; experiment 1) and knee extensor (KE; experiment 2) maximal compound action potential (Mmax) amplitude between long-term resistance trained (LTRT; n = 15 and n = 14, 6 ± 3 and 4 ± 1 yr of training) and untrained (UT; n = 14 and n = 49) men, and examined the effect of normalizing electromyography (EMG) during maximal voluntary torque (MVT) production to Mmax amplitude on differences between LTRT and UT. EMG was recorded from multiple sites and muscles of EF and KE, Mmax was evoked with percutaneous nerve stimulation, and muscle size was assessed with ultrasonography (thickness, EF) and magnetic resonance imaging (cross-sectional area, KE). Muscle-electrode distance (MED) was measured to account for the effect of adipose tissue on EMG and Mmax. LTRT displayed greater MVT (+66%-71%, P < 0.001), muscle size (+54%-56%, P < 0.001), and Mmax amplitudes (+29%-60%, P ≤ 0.010) even when corrected for MED (P ≤ 0.045). Mmax was associated with the size of both muscle groups (r ≥ 0.466, P ≤ 0.011). Compared with UT, LTRT had higher absolute voluntary EMG amplitude for the KE (P < 0.001), but not the EF (P = 0.195), and these differences/similarities were maintained after correction for MED; however, Mmax normalization resulted in no differences between LTRT and UT for any muscle and/or muscle group (P ≥ 0.652). The positive association between Mmax and muscle size, and no differences when accounting for peripheral electrophysiological properties (EMG/Mmax), indicates the greater absolute voluntary EMG amplitude of LTRT might be confounded by muscle morphology, rather than providing a discrete measure of central neural activity. This study therefore suggests limited agonist neural adaptation after LTRT.NEW & NOTEWORTHY In a large sample of long-term resistance-trained individuals, we showed greater maximal M-wave amplitude of the elbow flexors and knee extensors compared with untrained individuals, which appears to be at least partially mediated by differences in muscle size. The lack of group differences in voluntary EMG amplitude when normalized to maximal M-wave suggests that differences in muscle morphology might impair interpretation of voluntary EMG as an index of central neural activity.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Eletromiografia , Humanos , Contração Isométrica , Masculino , Contração Muscular , Músculo Esquelético , Músculo Quadríceps
8.
Med Sci Sports Exerc ; 53(10): 2140-2151, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33935234

RESUMO

PURPOSE: This study aimed to determine the best muscle size index of muscle strength by establishing if incorporating muscle architecture measurements improved the human muscle size-strength relationship. The influence of calculating muscle force and the location of anatomical cross-sectional area (ACSA) measurements on this relationship were also examined. METHODS: Fifty-two recreationally active men completed unilateral isometric knee extension strength assessments and magnetic resonance imaging scans of the dominant thigh and knee to determine quadriceps femoris size variables (ACSA along the length of the femur, maximum ACSA (ACSAMAX), and volume (VOL)) and patellar tendon moment arm. Ultrasound images (two sites per constituent muscle) were analyzed to quantify muscle architecture (fascicle length, pennation angle) and, when combined with VOL (from magnetic resonance imaging), facilitated calculation of quadriceps femoris effective PCSA (EFFPCSA) as potentially the best muscle size determinant of strength. Muscle force was calculated by dividing maximum voluntary torque by the moment arm and addition of antagonist torque (derived from hamstring EMG). RESULTS: The associations of EFFPCSA (r = 0.685), ACSAMAX (r = 0.697), or VOL (r = 0.773) with strength did not differ, although qualitatively VOL explained 59.8% of the variance in strength, ~11%-13% greater than EFFPCSA or ACSAMAX. All muscle size variables had weaker associations with muscle force than maximum voluntary torque. The association of strength-ACSA at 65% of femur length (r = 0.719) was greater than for ACSA measured between 10%-55% and 75%-90% (r = -0.042-0.633) of femur length. CONCLUSIONS: In conclusion, using contemporary methods to assess muscle architecture and calculate EFFPCSA did not enhance the muscle strength-size association. For understanding/monitoring muscle size, the major determinant of strength, these findings support the assessment of muscle volume, which is independent of architecture measurements and was most highly correlated with strength.


Assuntos
Força Muscular , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/fisiologia , Adulto , Humanos , Joelho/diagnóstico por imagem , Joelho/fisiologia , Imageamento por Ressonância Magnética , Masculino , Ligamento Patelar/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Coxa da Perna/anatomia & histologia , Coxa da Perna/diagnóstico por imagem , Coxa da Perna/fisiologia , Torque , Ultrassonografia , Adulto Jovem
9.
Prog Cardiovasc Dis ; 67: 2-10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33549590

RESUMO

COVID-19 is one of the biggest health crises that the world has seen. Whilst measures to abate transmission and infection are ongoing, there continues to be growing numbers of patients requiring chronic support, which is already putting a strain on health care systems around the world and which may do so for years to come. A legacy of COVID-19 will be a long-term requirement to support patients with dedicated rehabilitation and support services. With many clinical settings characterized by a lack of funding and resources, the need to provide these additional services could overwhelm clinical capacity. This position statement from the Healthy Living for Pandemic Event Protection (HL-PIVOT) Network provides a collaborative blueprint focused on leading research and developing clinical guidelines, bringing together professionals with expertise in clinical services and the exercise sciences to develop the evidence base needed to improve outcomes for patients infected by COVID-19.


Assuntos
COVID-19/reabilitação , Aptidão Cardiorrespiratória , Exercício Físico , Reabilitação Cardíaca , Tolerância ao Exercício , Política de Saúde , Humanos , Política Organizacional , Reabilitação/métodos , Doenças Respiratórias/reabilitação , Telemedicina
10.
J Appl Physiol (1985) ; 128(4): 1000-1011, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873069

RESUMO

The greater muscular strength of long-term resistance-trained (LTT) individuals is often attributed to hypertrophy, but the role of other factors, notably maximum voluntary specific tension (ST), muscle architecture, and any differences in joint mechanics (moment arm), have not been documented. The aim of the present study was to examine the musculoskeletal factors that might explain the greater quadriceps strength and size of LTT vs. untrained (UT) individuals. LTT (n = 16, age 21.6 ± 2.0 yr) had 4.0 ± 0.8 yr of systematic knee extensor heavy-resistance training experience, whereas UT (n = 52; age 25.1 ± 2.3 yr) had no lower-body resistance training experience for >18 mo. Knee extension dynamometry, T1-weighted magnetic resonance images of the thigh and knee, and ultrasonography of the quadriceps muscle group at 10 locations were used to determine quadriceps: isometric maximal voluntary torque (MVT), muscle volume (QVOL), patella tendon moment arm (PTMA), pennation angle (QΘP) and fascicle length (QFL), physiological cross-sectional area (QPCSA), and ST. LTT had substantially greater MVT (+60% vs. UT, P < 0.001) and QVOL (+56%, P < 0.001) and QPCSA (+41%, P < 0.001) but smaller differences in ST (+9%, P < 0.05) and moment arm (+4%, P < 0.05), and thus muscle size was the primary explanation for the greater strength of LTT. The greater muscle size (volume) of LTT was primarily attributable to the greater QPCSA (+41%; indicating more sarcomeres in parallel) rather than the more modest difference in FL (+11%; indicating more sarcomeres in series). There was no evidence in the present study for regional hypertrophy after LTT.NEW & NOTEWORTHY Here we demonstrate that the larger muscle strength (+60%) of a long-term (4+ yr) resistance-trained group compared with untrained controls was due to their similarly larger muscle volume (+56%), primarily due to a larger physiological cross-sectional area and modest differences in fascicle length, as well as modest differences in maximum voluntary specific tension and patella tendon moment arm. In addition, the present study refutes the possibility of regional hypertrophy, despite large differences in muscle volume.


Assuntos
Músculo Esquelético , Treinamento Resistido , Adulto , Humanos , Contração Isométrica , Força Muscular , Músculo Esquelético/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Torque , Adulto Jovem
11.
J Sports Sci ; 37(21): 2452-2458, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31303128

RESUMO

Hamstring strain injury (HSI) rates are higher for males vs. females. This cross-sectional study investigated if inherent differences in biceps femoris long head (BFLH) fascicle length (Lf) exist between recreationally active males and females (i.e., individuals without specific training practice history). Twenty-four young healthy participants (12 males; 12 females) had their BFLH muscle architecture (Lf, pennation angle [θp], and muscle thickness [MT]) measured using B-mode ultrasonography. Eccentric and isometric knee flexion strength were also assessed. BFLH Lf did not differ between sexes when expressed in absolute terms (males, 81.5 ± 14.7 mm; females, 73.6 ± 15.9 mm, P = 0.220, effect size (ES) = 0.52) or relative to femur length (0.140 ≤ P ≤ 0.220, ES = 0.63). Similarly, BFLH θp did not differ between sexes (P = 0.650) but BFLH MT was 18.9% larger for males vs. females (P = 0.024, ES = 0.99). Isometric and eccentric knee flexion strength was greater for males vs. females in absolute terms ([both] P < 0.001, 2.00 ≤ ES ≤ 2.27) and relative to body mass ([both] P < 0.001, 1.93 ≤ ES ≤ 2.13). In conclusion, factors other than BFLH Lf seem likely to be implicated in higher male vs. female HSI rates.


Assuntos
Músculos Isquiossurais/anatomia & histologia , Estudos Transversais , Feminino , Músculos Isquiossurais/diagnóstico por imagem , Músculos Isquiossurais/lesões , Músculos Isquiossurais/fisiologia , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Masculino , Força Muscular/fisiologia , Fatores de Risco , Fatores Sexuais , Ultrassonografia
12.
Scand J Med Sci Sports ; 29(3): 348-359, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30387185

RESUMO

The purpose of this study was to compare the effect of resistance training (RT) duration, including years of exposure, on agonist and antagonist neuromuscular activation throughout the knee extension voluntary torque range. Fifty-seven healthy men (untrained [UNT] n = 29, short-term RT [12WK] n = 14, and long-term RT [4YR] n = 14) performed maximum and sub-maximum (20%-80% maximum voluntary torque [MVT]) unilateral isometric knee extension contractions with torque, agonist and antagonist surface EMG recorded. Agonist EMG, including at MVT, was corrected for the confounding effects of adiposity (ie, muscle-electrode distance; measured with ultrasonography). Quadriceps maximum anatomical cross-sectional area (QACSAMAX ; via MRI) was also assessed. MVT was distinct for all three groups (4YR +60/+39% vs UNT/12WK; 12WK +15% vs UNT; 0.001 < P ≤ 0.021), and QACSAMAX was greater for 4YR (+50/+42% vs UNT/12WK; [both] P < 0.001). Agonist EMG at MVT was +44/+33% greater for 4YR /12WK ([both] P < 0.001) vs. UNT, but did not differ between RT groups. The torque-agonist EMG relationship of 4YR displayed a right/down shift with lower agonist EMG at the highest common torque (196 Nm) compared to 12WK and UNT (0.005 ≤ P ≤ 0.013; Effect size [ES] 0.90 ≤ ES ≤ 1.28). The torque-antagonist EMG relationship displayed a lower slope with increasing RT duration (4YR < 12WK < UNT; 0.001 < P ≤ 0.094; 0.56 ≤ ES ≤ 1.31), and antagonist EMG at the highest common torque was also lower for 4YR than UNT (-69%; P < 0.001; ES = 1.18). In conclusion, 4YR and 12WK had similar agonist activation at MVT and this adaptation may be maximized during early months of RT. In contrast, inter-muscular coordination, specifically antagonist coactivation was progressively lower, and likely continues to adapt, with prolonged RT.


Assuntos
Adaptação Fisiológica , Eletromiografia , Contração Isométrica , Músculo Quadríceps/fisiologia , Treinamento Resistido , Fatores de Tempo , Adulto , Humanos , Joelho , Masculino , Torque , Adulto Jovem
13.
Front Physiol ; 9: 1170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233387

RESUMO

The effect of different strength training regimes, and in particular training utilizing brief explosive contractions, on tendinous tissue properties is poorly understood. This study compared the efficacy of 12 weeks of knee extensor explosive-contraction (ECT; n = 14) vs. sustained-contraction (SCT; n = 15) strength training vs. a non-training control (n = 13) to induce changes in patellar tendon and knee extensor tendon-aponeurosis stiffness and size (patellar tendon, vastus-lateralis aponeurosis, quadriceps femoris muscle) in healthy young men. Training involved 40 isometric knee extension contractions (three times/week): gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT), or briefly contracting as fast as possible to ∼80% MVT (ECT). Changes in patellar tendon stiffness and Young's modulus, tendon-aponeurosis complex stiffness, as well as quadriceps femoris muscle volume, vastus-lateralis aponeurosis area and patellar tendon cross-sectional area were quantified with ultrasonography, dynamometry, and magnetic resonance imaging. ECT and SCT similarly increased patellar tendon stiffness (20% vs. 16%, both p < 0.05 vs. control) and Young's modulus (22% vs. 16%, both p < 0.05 vs. control). Tendon-aponeurosis complex high-force stiffness increased only after SCT (21%; p < 0.02), while ECT resulted in greater overall elongation of the tendon-aponeurosis complex. Quadriceps muscle volume only increased after sustained-contraction training (8%; p = 0.001), with unclear effects of strength training on aponeurosis area. The changes in patellar tendon cross-sectional area after strength training were not appreciably different to control. Our results suggest brief high force muscle contractions can induce increased free tendon stiffness, though SCT is needed to increase tendon-aponeurosis complex stiffness and muscle hypertrophy.

14.
PLoS One ; 13(1): e0190903, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360834

RESUMO

INTRODUCTION: Females experience higher risk of anterior cruciate ligament (ACL) injuries; males experience higher risk of hamstring strain injuries. Differences in injury may be partially due to sex differences in knee flexor (KF) to knee extensor (KE) muscle size ratio and the proportional size of constituent muscles. PURPOSE: To compare the absolute and proportional size, and mass distribution, of individual KE and KF muscles, as well as overall size and balance (size ratio) of these muscle groups between the sexes. METHODS: T1-weighted axial plane MR images (1.5T) of healthy untrained young males and females (32 vs 34) were acquired to determine thigh muscle anatomical cross-sectional area (ACSA). Maximal ACSA (ACSAmax) of constituent muscles, summated for KF and KE muscle groups, and the KF:KE ratio were calculated. RESULTS: Females had 25.3% smaller KE ACSAmax (70.9±12.1 vs 93.6±10.3 cm2; P<0.001) and 29.6% smaller KF ACSAmax than males (38.8±7.3cm2 vs 55.1±7.3cm2; P<0.001). Consequently, females had lower KF:KE ACSA ratio (P = 0.031). There were sex differences in the proportional size of 2/4 KE and 5/6 KF. In females, vastus lateralis (VL), biceps femoris long-head (BFlh) and semimembranosus (SM) were a greater proportion and sartorius (SA), gracilis (GR) and biceps femoris short-head (BFsh) a smaller proportion of their respective muscle groups compared to males (All P<0.05). CONCLUSION: Sex differences in KF:KE ACSAmax ratio may contribute to increased risk of ACL injury in females. Sex discrepancies in absolute and proportional size of SA, GR, VL and BFlh may contribute further anatomical explanations for sex differences in injury incidence.


Assuntos
Joelho/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Adolescente , Lesões do Ligamento Cruzado Anterior/etiologia , Feminino , Músculos Isquiossurais/anatomia & histologia , Músculos Isquiossurais/lesões , Músculos Isquiossurais/fisiologia , Humanos , Joelho/diagnóstico por imagem , Joelho/fisiologia , Traumatismos do Joelho/etiologia , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Tamanho do Órgão , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Fatores de Risco , Caracteres Sexuais , Adulto Jovem
16.
Exp Physiol ; 102(4): 448-461, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28205264

RESUMO

NEW FINDINGS: What is the central question of this study? Do tendon and/or muscle-tendon unit stiffness influence rate of torque development? What is the main finding and its importance? In our experimental conditions, some measures of relative (to maximal voluntary torque and tissue length) muscle-tendon unit stiffness had small correlations with voluntary/evoked rate of torque development over matching torque increments. However, absolute and relative tendon stiffness were unrelated to voluntary and evoked rate of torque development. Therefore, the muscle aponeurosis but not free tendon influences the relative rate of torque development. Factors other than tissue stiffness more strongly determine the absolute rate of torque development. The influence of musculotendinous tissue stiffness on contractile rate of torque development (RTD) remains opaque. In this study, we examined the relationships between both patellar tendon (PT) and vastus lateralis muscle-tendon unit (MTU) stiffness and the voluntary and evoked knee-extension RTD. Fifty-two healthy untrained men completed duplicate laboratory sessions. Absolute and relative RTD were measured at 50 N m or 25% maximal voluntary torque (MVT) increments from onset and sequentially during explosive voluntary and evoked octet isometric contractions (supramaximal stimulation; eight pulses at 300 Hz). Isometric MVT was also assessed. Patellar tendon and MTU stiffness were derived from simultaneous force and ultrasound recordings of the PT and vastus lateralis aponeurosis during constant RTD ramp contractions. Absolute and relative (to MVT and resting tissue length) stiffness (k) was measured over identical torque increments as RTD. Pearson's correlations tested relationships between stiffness and RTD measurements over matching absolute/relative torque increments. Absolute and relative PT k were unrelated to equivalent voluntary/evoked (r = 0.020-0.255, P = 0.069-0.891). Absolute MTU k was unrelated to voluntary or evoked RTD (r ≤ 0.191, P ≥ 0.184), but some measures of relative MTU k were related to relative voluntary/evoked RTD (e.g. RTD for 25-50% MVT, r = 0.374/0.353, P = 0.007/0.014). In conclusion, relative MTU k explained a small proportion of the variance in relative voluntary and evoked RTD (both ≤19%), despite no association of absolute MTU k or absolute/relative PT k with equivalent RTD measures. Therefore, the muscle-aponeurosis component but not free tendon was associated with relative RTD, although it seems that an overriding influence of MVT negated any relationship of absolute MTU k and absolute RTD.


Assuntos
Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Ligamento Patelar/fisiologia , Tendões/fisiologia , Adulto , Eletromiografia/métodos , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Articulação do Joelho/fisiologia , Masculino , Contração Muscular/fisiologia , Músculo Quadríceps/fisiologia , Torque
17.
Eur J Appl Physiol ; 117(4): 631-640, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28239775

RESUMO

PURPOSE: Whilst neural and morphological adaptations following resistance training (RT) have been investigated extensively at a group level, relatively little is known about the contribution of specific physiological mechanisms, or pre-training strength, to the individual changes in strength following training. This study investigated the contribution of multiple underpinning neural [agonist EMG (QEMGMVT), antagonist EMG (HEMGANTAG)] and morphological variables [total quadriceps volume (QUADSVOL), and muscle fascicle pennation angle (QUADSθ p)], as well as pre-training strength, to the individual changes in strength after 12 weeks of knee extensor RT. METHODS: Twenty-eight healthy young men completed 12 weeks of isometric knee extensor RT (3/week). Isometric maximum voluntary torque (MVT) was assessed pre- and post-RT, as were simultaneous neural drive to the agonist (QEMGMVT) and antagonist (HEMGANTAG). In addition QUADSVOL was determined with MRI and QUADSθ p with B-mode ultrasound. RESULTS: Percentage changes (∆) in MVT were correlated to ∆QEMGMVT (r = 0.576, P = 0.001), ∆QUADSVOL (r = 0.461, P = 0.014), and pre-training MVT (r = -0.429, P = 0.023), but not ∆HEMGANTAG (r = 0.298, P = 0.123) or ∆QUADSθ p (r = -0.207, P = 0.291). Multiple regression analysis revealed 59.9% of the total variance in ∆MVT after RT to be explained by ∆QEMGMVT (30.6%), ∆QUADSVOL (18.7%), and pre-training MVT (10.6%). CONCLUSIONS: Changes in agonist neural drive, quadriceps muscle volume and pre-training strength combined to explain the majority of the variance in strength changes after knee extensor RT (~60%) and adaptations in agonist neural drive were the most important single predictor during this short-term intervention.


Assuntos
Força Muscular , Músculo Quadríceps/fisiologia , Treinamento Resistido , Adulto , Estudos de Casos e Controles , Potencial Evocado Motor , Humanos , Contração Isométrica , Masculino , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/inervação , Distribuição Aleatória
18.
J Appl Physiol (1985) ; 120(11): 1364-73, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27055984

RESUMO

Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function.


Assuntos
Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Contração Isométrica/fisiologia , Força Muscular/fisiologia , Músculo Quadríceps/fisiologia , Eletromiografia/métodos , Humanos , Articulação do Joelho/fisiologia , Masculino , Treinamento Resistido/métodos , Tendões/fisiologia , Torque
19.
J Aging Phys Act ; 23(3): 352-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25007824

RESUMO

To investigate reasons for the age-related reduction in physical function, we determined the relationships between muscle size, strength, and power with 6-min walk distance (6MWD) and timed up-and-go performance in 49 young (23 ± 3.1 years) and 66 healthy, mobile older adults (72 ± 5 years). While muscle mass, determined by DXA and MRI, did not correlate with performance in the older adults, power per body mass, determined from a countermovement jump, did correlate. The 40% lower jumping power observed in older adults (p < .05) was due to a lower take-off velocity, which explained 34% and 42% of the variance in 6MWD in older women and men, respectively (p < .01). The lower velocity was partly attributable to the higher body mass to maximal force ratio, but most was due to a lower intrinsic muscle speed. While changes in muscle function explain part of the age-related reduction in functional performance, ~60% of the deficit remains to be explained.


Assuntos
Envelhecimento/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Sarcopenia/fisiopatologia , Idoso , Teste de Esforço , Feminino , Avaliação Geriátrica , Humanos , Masculino , Caminhada/fisiologia
20.
Muscle Nerve ; 50(3): 393-400, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24408784

RESUMO

INTRODUCTION: Susceptibility to muscle fatigue during aging could depend on muscle activation patterns. METHODS: Young (mean age, 22 years) and older (mean age 70 years) men and women completed two fatigue tests of knee extensor muscles using voluntary and electrically stimulated contractions. RESULTS: Older subjects displayed a shift to the left of the torque-frequency relationship and held a sustained voluntary isometric contraction at 50% maximal strength for significantly longer than young (P < 0.001). Young and old showed similar fatigue during electrically induced, intermittent isometric contractions (1-s on, 1-s off for 2 min), but women fatigued less than men (P = 0.001). Stronger muscles fatigued more quickly, and slower contractile properties were associated with longer sustained contractions. CONCLUSIONS: The slowing and weakness of older muscle was associated with superior fatigue resistance during sustained isometric contractions. Young and old showed similar fatigue following a series of brief, intermittent contractions, but women fatigued less than men.


Assuntos
Envelhecimento/fisiologia , Contração Isométrica/fisiologia , Joelho/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Idoso , Algoritmos , Estimulação Elétrica , Feminino , Humanos , Masculino , Força Muscular , Caracteres Sexuais , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...